MI Power Grid New Technologies and Business Models Workgroup: Electric Vehicles | | Identified Barriers | Possible Solutions | |----|--|--| | 1. | Lack of long term-thinking on a sustainable utility business model for EV infrastructure. i | Include all EV make ready in a plant asset. ii | | 2. | Move out of pilots and start programs.ⁱⁱⁱ a. EV infrastructure is not a short-term investment. Critical to being carbon neutral by 2050. b. Need to grow pilots and incorporate lessons learned to get EVs on the road. | Regulatory flexibility | | 3. | Demand charges pose an issue. Short term rates may not be sustainable with increased adoption. There is a need for predictable and standardized treatment of EV charging infrastructure across different utility service territories. | Use distributed batteries to help reduce costs for small
underutilized stations that are negatively impacted by demand
charges.^{iv} | | 4. | Rate designs need to better leverage the technology we have. v | Broader examination beyond residential charging, including public charging. vi The right tariff to result in the best environment for EV and electrification programs. vii | | 5. | Real coordination between transmission & distribution required viii | • | | 6. | Missing holistic assessment of value of smart charging across multiple value streams. ix | Studies! | | 7. | EVs are a burden to the grid. | Flexible EV charging can support the grid and is enabled by charging infrastructure. X Vehicles parked 95% of time. EVs provide value in multiple ways, including non-EV owners XI Generation capacity & transmission/distribution planning Resilience to extreme events Seasonal planning Commitment and dispatch decisions Balancing and power quality Support end consumers | | 8. | Substation upgrades may be required to accommodate charging demand. | Though majority of substations examined could supply 100 EVs at
100kW without upgrades, some substations will require upgrades
unless alternative on-site solutions (like storage) are pursued. xii | | 9. | Electrification of Class 8 trucking operations may stress the electricity distribution system | Encouraging the right charging schedule may significantly reduce peak demand. Charging at lowest possible power level reduces peak power demand by ~40-90% xiii Charging at higher power levels results in increased flexibility to schedule charging xiv | | Identified Barriers | Possible Solutions | |--|---| | Residential EV charging represents significant increase in household
electricity use. Clustering effects in EV adoption and higher power
charging exacerbates the issue^{xv} | Effective planning, smart EV charging, and distributed energy storage systems Consider EVs in systems upgrades^{xvi} | | 11. The infrastructure is not developing at the same speed as the vehicles are reaching the marketplace.xvii | Include EV charging in new distribution system upgrades to help inform decisions. State regulators should consider charging infrastructure and enabling managed charging. xviii | | 12. Utility with large number of DERs like EVs has many more controlled nodes connected with it than is traditionally seen.xix | Utility may communicate constraints at substation level to 3rd parties who control DER^{xx} Clarity on interoperability while allowing multiple standards | | Utilities need to make smart charging easier and more than just
time of use rates. | • | | 14. Customer communication to move charging to off-peak | Communicate when to charge based on what systems customers are using. xxi Real-time, effective communication is critical to make EVs flexible xxii | | 15. The recent FERC Order 2222 on DR aggregation in energy markets requires MISO to create a tariff to allow aggregators to participate in its market. FERC wants monitoring costs low.xxiii | Encourage all parties to keep infrastructure at a low cost, using AMI if possible. Need to help monetize the process and make it easier for EV owners to participate as with an aggregator in marketplace. | | 16. Lack of updated standards. | Standards need to be updated. Electrification will allow EVs to integrate into the grid as both a resource and load. There are significant storage implications as well.xxiv | | 17. DCFC interoperability has challenges. | Invest in intelligently in chargers and open standards for EVs to ensure interoperability.xxx Commission mandate independent 3rd party testing for chargers supported by ratepayer funds.xxxi | | 18. Lack of holistic, common statewide approach to EVs and electrification | Michigan needs a holistic, common statewide approach to EVs and electrification—not a patchwork by different state agencies. xxvii | | 19. Cautious that needs are met in all communities. There exist socioeconomic barriers in adoption. | Examine how EVs can provide paths in underserved communities through early listening and engagement to come up with tailored programs that make sense for underserved communities. xxviii Offer greater incentives to the owners of multi-family housing buildings. xxix | | 20. Lack of more financial resources through policy. | Make sure the investments remain stable in the longer term. xxx Paying 5-7 dollars per kWh for EV energy. Short-term rates may not be sustainable with increased adoption. Funding from outside of utility rates would help. Electricity customers should not be responsible for the bulk of the cost to rebuild the vehicle transportation system. xxxi | | Identified Barriers | Possible Solutions | |---|---| | 21. High cost of charging infrastructure, especially in rural locales | For small, underutilized stations, distributed batteries can help
reduce costs. | | 22. High cost of EV charging connection | Mobility hubs^{xxxii} Allow leasing & new ownership models. Change utility relationship. Move electrification beyond pace of incentives. | | 23. 3 rd parties cannot resell energy to customers xxxiii | • | | 24. Integration with home energy backup system | Standards and model development for backflow to home in event
of power outage, F150 Lightning model | | 25. Integration with rooftop solar | Model and framework development for integration | ## Applicable and Emerging Business Models - Inclusive financing to capitalize on grid edge solutions, like EVs, through tariffed on-bill financing.xxxiv - Business models for EV buses^{xxxv} - o Bus leasing model - Utility capitalizes charging equipment. - o Utility capitalizes charging equipment and on-board storage. - Combine mobility/transportation as service with energy as service. - Combine with home energy backup and self-generation ⁱ Panel: EV Regulatory Barriers and Solutions – A National Perspective. 02/10/2021 workgroup meeting. ⁱⁱ Panel: EV Regulatory Barriers and Solutions – A National Perspective. 02/10/2021 workgroup meeting. iii Panel: EV Regulatory Barriers and Solutions – A National Perspective. 02/10/2021 workgroup meeting. iv Muratori. 02/10/2021 workgroup chat. ^v Panel: EV Regulatory Barriers and Solutions – A National Perspective. 02/10/2021 workgroup meeting. vi Panel: EV Regulatory Barriers and Solutions – A National Perspective. 02/10/2021 workgroup meeting. vii Panel: Transportation Electrification in Michigan & Opportunities for Vehicle-to-Grid Integration. 02/10/2021 workgroup meeting. viii Piero. 05/19/2021 workgroup PPT, p. 10 ix Muratori. 02/10/2021 workgroup PPT., p. 31 ^x Muratori. 02/10/2021 workgroup PPT., p. 27 xi Muratori. 02/10/2021 workgroup PPT., p. 28 xii Muratori. 02/10/2021 workgroup PPT., p. 23. xiii Muratori. 02/10/2021 workgroup PPT. xiv Muratori. 02/10/2021 workgroup PPT, p. 21. xv Muratori. 02/10/2021 workgroup PPT., p. 15. - xvi Muratori. 02/10/2021 workgroup PPT., p. 15. - xvii Panel: EV Regulatory Barriers and Solutions A National Perspective. 02/10/2021 workgroup meeting. - xviii Muratori. 02/10/2021 workgroup presentation Q&A. - xix Piero. 05/19/2021 workgroup PPT, p. 6. - xx Piero. 05/19/2021 workgroup PPT, p. 7. - xxi Muratori. 02/10/2021 workgroup presentation Q&A. - xxii Muratori. 02/10/2021 workgroup presentation Q&A. - xxiii Panel: Transportation Electrification in Michigan & Opportunities for Vehicle-to-Grid Integration. 02/10/2021 workgroup meeting. - xxiv Panel: Transportation Electrification in Michigan & Opportunities for Vehicle-to-Grid Integration. 02/10/2021 workgroup meeting. - xxv Panel: EV Regulatory Barriers and Solutions A National Perspective. 02/10/2021 workgroup meeting. - xxvi Panel: EV Regulatory Barriers and Solutions A National Perspective. 02/10/2021 workgroup meeting. - xxvii Panel: Transportation Electrification in Michigan & Opportunities for Vehicle-to-Grid Integration. 02/10/2021 workgroup meeting. - xxviii Panel: EV Regulatory Barriers and Solutions A National Perspective. 02/10/2021 workgroup meeting. - xxix Panel: Utility EV Pilot Updates and Challenges in MI. 02/10/2021 workgroup meeting. - xxx Panel: EV Regulatory Barriers and Solutions A National Perspective. 02/10/2021 workgroup meeting. - xxxi Panel: EV Regulatory Barriers and Solutions A National Perspective. 02/10/2021 workgroup meeting. Q&A/chat. - xxxii Piero. 05/19/2021 workgroup PPT, p. 8. - xxxiii Piero. 05/19/2021 workgroup PPT, p. 10 - xxxiv Hummel. 05/19/2021 workgroup PPT, slide 10. - xxxv Hummel. 05/19/2021 workgroup PPT, slide 12.